Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
BMC Med Educ ; 22(1): 836, 2022 Dec 03.
Article in English | MEDLINE | ID: covidwho-2153571

ABSTRACT

BACKGROUND: Given the rapid development of clinical immunology technologies, students majoring in laboratory medicine should master the technological principles and application of clinical laboratory immunology. However, many are required to take online courses due to COVID-19 restrictions, which highlights the need to revisit teaching strategies. Recently, various medical education courses (such as Biochemistry, Physiology, etc.) have implemented the flipped classroom (FC) and team-based learning (TBL) methods, resulting in more positive teaching evaluations. To promote the students' mastery of the difficult knowledge effectively during the online teaching work, we evaluated the performance of online FC-TBL in a clinical laboratory immunology course. METHODS: Sixty-two third-year students from two classes majoring in Laboratory Medicine were recruited and divided into two groups, including one group with traditional lecture-based learning teaching strategy (LBL group) and the other group with LBL or online FC combined with TBL teaching strategy (FC-TBL group). We selected three chapters to conduct FC-TBL teaching in class. All participants took in-class quizzes and final examinations that targeted the same knowledge points. Finally, all participants completed anonymous questionnaires asking for their perceptions of the respective teaching models. In addition, we conducted a survey of teaching suggestions by a FC-TBL class of students majoring in Laboratory Medicine. RESULTS: The FC-TBL group (vs LBL group) had significantly higher scores on the in-class quizzes and final examinations, and also reported high satisfaction with the FC-TBL model. These findings indicate that FC-TBL is suitable for clinical laboratory immunology, as the participants quickly gained essential knowledge. Specifically, FC-TBL helped to "increase learning motivation," "promote self-directed learning skills," "extend more related knowledge," "enhance problem-solving abilities," "enhance clinical reasoning abilities," and "enhance communication skills." For participants' suggestions, 48.38% (15/31) students held positive attitude to FC-TBL teaching strategy compared to 25.81% (8/31) students who considered FC-TBL teaching strategy still needs continuous improvement, and 25.81% (8/31) students reported that they believed FC-TBL teaching strategy was perfect and no further suggestions. CONCLUSIONS: Online FC-TBL effectively enhanced learning activity among students of a clinical laboratory immunology course. This is particularly useful in the COVID-19 context.


Subject(s)
COVID-19 , Laboratories, Clinical , Humans , Pandemics , Laboratories , Learning
2.
Emerg Microbes Infect ; 11(1): 1572-1585, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1873822

ABSTRACT

Cryptococcal meningoencephalitis (CM) is emerging as an infection in HIV/AIDS patients shifted from primarily ART-naive to ART-experienced individuals, as well as patients with COVID-19 and immunocompetent hosts. This fungal infection is mainly caused by the opportunistic human pathogen Cryptococcus neoformans. Brain or central nervous system (CNS) dissemination is the deadliest process for this disease; however, mechanisms underlying this process have yet to be elucidated. Moreover, illustrations of clinically relevant responses in cryptococcosis are currently limited due to the low availability of clinical samples. In this study, to explore the clinically relevant responses during C. neoformans infection, macaque and mouse infection models were employed and miRNA-mRNA transcriptomes were performed and combined, which revealed cytoskeleton, a major feature of HIV/AIDS patients, was a centric pathway regulated in both infection models. Notably, assays of clinical immune cells confirmed an enhanced macrophage "Trojan Horse" in patients with HIV/AIDS, which could be shut down by cytoskeleton inhibitors. Furthermore, myocilin, encoded by MYOC, was found to be a novel enhancer for the macrophage "Trojan Horse," and an enhanced fungal burden was achieved in the brains of MYOC-transgenic mice. Taken together, the findings from this study reveal fundamental roles of the cytoskeleton and MYOC in fungal CNS dissemination, which not only helps to understand the high prevalence of CM in HIV/AIDS but also facilitates the development of novel therapeutics for meningoencephalitis caused by C. neoformans and other pathogenic microorganisms.


Subject(s)
COVID-19 , Cryptococcosis , Cryptococcus neoformans , HIV Infections , Meningoencephalitis , MicroRNAs , Animals , Brain/pathology , Cryptococcosis/microbiology , Cryptococcus neoformans/genetics , Disease Models, Animal , Humans , Macaca , Meningoencephalitis/microbiology , Mice , MicroRNAs/genetics , Transcriptome
3.
Virol Sin ; 35(3): 266-271, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-3407

ABSTRACT

Currently there is no effective antiviral therapy for SARS-CoV-2 infection, which frequently leads to fatal inflammatory responses and acute lung injury. Here, we discuss the various mechanisms of SARS-CoV-mediated inflammation. We also assume that SARS-CoV-2 likely shares similar inflammatory responses. Potential therapeutic tools to reduce SARS-CoV-2-induced inflammatory responses include various methods to block FcR activation. In the absence of a proven clinical FcR blocker, the use of intravenous immunoglobulin to block FcR activation may be a viable option for the urgent treatment of pulmonary inflammation to prevent severe lung injury. Such treatment may also be combined with systemic anti-inflammatory drugs or corticosteroids. However, these strategies, as proposed here, remain to be clinically tested for effectiveness.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Inflammation/drug therapy , Pneumonia, Viral/drug therapy , Pneumonia, Viral/immunology , Acute Lung Injury/immunology , Acute Lung Injury/virology , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Viral , Antibody-Dependent Enhancement/immunology , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Cytokines/metabolism , Humans , Inflammation/immunology , Lung/immunology , Pandemics , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL